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Section 1

Adaptive Cruise Control
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Longitudinal control: Cruise control

“RunSmart Predictive Cruise: How it Works

Unlike standard cruise control, where the truck tries to maintain a set
speed regardless of the terrain ahead, RunSmart Predictive Cruise looks up
to one mile ahead of the truck’s location and anticipates road grades by
using GPS and 3D digital map technology. The system adjusts the actual
speed of the truck for maximum fuel efficiency based on the terrain while

staying within 6 percent of the set speed.”
Press release from Freightliner Trucks, March 19 2009
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Longitudinal control: Cruise control

Optimal driving
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Longitudinal control
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Longitudinal control

Some examples

@ CC Cruise Control

@ ACC Adaptive Cruise Control
@ CA Collision avoidance

o ABS Anti-Blockier-System
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Use radar or other senors to measure the distance to other vehicles.

Control brakes and acceleration

Three different modes
@ Cruise control
@ Keep distance to a vehicle in front of you

@ Brake to avoid collision
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without preceding vehicle maintain constant speed

with preceding vehicle maintaln safe distance
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ACC: String stability

In a long caravan with ACC in all vehicles, string stability is important
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ACC String stability

Consider a caravan where x;, i = 1,2, ... the positions of the vehicles

Define
0i = X; — Xi—1 + Ldes

where Lges is the desired distance.

A simple longitudinal model of the vehicle

)'5,' = uj
where the acceleration u; is the control signal
Assume that the following control strategy is used

uj = —kpd; — kyo;
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ACC String stability

It is possible to show that the transfer function relating the spacing errors
of two consecutive vehicles is

0i(s)  kus+kp
G(S) B 5,'_1(5) 52 + kys + kp

The gain is

k2 + k2w?
|G(iw)| = c
(ki — 22 + K207

and it is straightforward to show that |G(iw)| > 1 if w < y/2kp. This
means that the amplitude of a low frequency oscillation increases when it
is transferred backwards in the caravan.

Source: Vehicle Dynamics and Control, Rajesh Rajamani
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Section 2

Stopping Distance
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Longitudinal dynamic

From the previous lecture:

Equation of longitudinal motion:

vV
mc;—t:F—R,—Rg—Ra
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Position as independent variable

In the cruise control application, the grade resistance Ry is a function of
position. In this and many other cases it is natural to use position as
independent variable.

The right-hand side of differential then becomes

mﬂ B mﬂ% —m dv ﬂd(v2) _d(mv?)2)
dt - Mdxdt . Vdx 2 dx | dx
and we obtain g2
md(v
3 (dx):F—R,—Rg—Ra

Note that the previously introduced models for R, and R, are linear
functions of v2.
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It follows that

d(mv?/2) = (F = R, — R,) dx — mg dh

where

e d(mv?/2):change of kinetic energy.
e (F — R — R,) dx: work
@ mg dh = mgsinfs dx: change of potential energy
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Stopping distance: First case

Given an initial speed V/, the objective is to determine the stopping
distance S. From the previous slides:
m d(v?)
2 dx

= —F,— R — Ry — R,

Before the general case is analyzed, some special cases will be considered
First case: Neglect all forces except Fp. In this case we get:

gd(\ﬂ) — —Fpdx

Calculate the integrals from start to stop

0 S
/md(v2):/ Fp dx
ve 2 0

Note how the intervals of the integrals were chosen!
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Stopping distance: First case

The results is

V2

RS

i.e.
Initial kinetic energy = Stopping distance x Brake force
and )
%
s mv?
2F,
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Stopping distance: Second case

The second case includes the grade resistance mg sin 6s:

0 s
/ —d(v?) = —/ (Fp + mg sin0s) dx
v2 2 0

and the result is

v? .
m2 = FpS + mgsin6:S
i.e.
Initial kinetic energy =Stopping distance x Brake force
+ Change in potential energy

and

B mV?2/2

~ Fp+ mgsinfs
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Stopping distance: General case

d 2
g (d‘;) = —Fb—mgsines— frmgcoses_ CaeV2
It is a separable differential equation
m [° d(v?) /S d
m = — Ix
2 Jye Fy + mgsin b + frmg cosfs + Caev? 0

and

S =

m Fp + mgsinOs + f,mg cos fs + Cae V2
lo .
2C,e Fp + mgsinfs 4 f,mg cos 0

m Cae V2
= log ( 1+ -
2C,e Fp + mgsinfs + f,mg cos 0
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Section 3

Tyre modelling: The Brush Model, cont'd
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Brush model

From Lecture 1
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Brush model: Normal pressure

It was assumed that the normal pressure was constant in the contact
region.

According to Figure 1.15 a parabola shaped distribution seem more
reasonable, i.e.,

dF,
o Cx(l; — x)
In the adhesion region:
o,
dX =Kt I X
and
doF. _
dx Hp dx
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Brush model: Normal pressure

Sketch the normal and longitudinal force distributions:

dF;, dF,
dx dx

The longitudinal force Fy is the area under the curve to the right.
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Brush model: Sliding friction

Figure 1.16 shows the longitudinal force as a function of slip.
It can be seen that the force reaches a peak value and then decreases.

Assume that the sliding friction us is lower than the friction fip in the
adhesive region, and that the normal force distribution is constant in the

contact region.

24 /40
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Brush model: Sliding friction

Sketch the normal and longitudinal force distributions:

dF;, dF,
dx dx

The longitudinal force Fy is the area under the curve to the right.
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Section 4

Application: Estimations of Coefficient of Friction u
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Estimation of coefficient of friction u

The coefficient of friction has been an important part when alakyzing the
braking and acceleration performance. Now, one example will be presented
on how to estimate the coefficient.

The approach is based on the approximation

where it is assumed that the gradient K is a function of u. If we first find
an estimate of K, then we can calculate p.
To be able to calclulate K, we will first estimate

o Longitudinal force Fy

@ Normal force W

o Longitudinal slip i
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Friction: Longitudinal force F,

Assume that longitudinal acceleration is measured.

Longitudinal model
ma:FX—Ra—Rr_Rg

The longitudinal force is now given by
Fx=m(a+gsinbs)+ R, + R,

where
@ m is estimated mass
@ a+ gsinf, is measured by the accelerometer

@ R, and R, is calculated using empirical models
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Friction: Normal force W

Normal force

I h .
W= 2mg — (R, + m(a+ gsinés))

L L
h h .
W, = Tme + [(Ra + m(a+ gsinbs))
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Friction: Longitudinal slip /

Assume that the car is front-wheel driven.

Then there is no slip at the rear-wheel:

Modern cars have sensors measuring angular speed with high precision,
since this information is needed by the ABS-system.

The sensors at the rear wheels can therefore be used to calculate V, and
then the slip at the front wheel can be calculated

Vi
wrrf

ir=1-

Now, the F,r, W¢, and ir at the front wheels are known and it possible to
estimate K and u
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Section 5

Brake Force Distribution, cont'd
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Brake force distribution

From lecture 2

Kor b+ hu
Kor  h— hp
Kpr + Kpr =1
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Electronic Brake-force Distribution

In this case we get
1
Wr = Z(ng + h(Fp+ F;))

och )
W, = Z(Wll — h(Fp+ F}))

If we neglect aerodynamic resistance we get
Fp+ Fr = m(a+ gsinf)

Assume that we measure the longitudinal acceleration. How can we use
this information to distribute the brake forces so that all wheels start
sliding at the same time, without knowing u?
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Section 6

Antilock Braking Systems (ABS)
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ABS: Introduction
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Anti-Lock Braking System

Sensors

S E000 How Surff Works

Jan Aslund (Linkdping University) Vehicle Dynamics and Control Lecture 3 36 /40



ABS: A simple control strategy

Vehicle speed
\ - Wheel Speed

Wheel Speed or Vehicle Speed

Jan Aslund (Linkdping University)
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When the wheels locks you loose

@ Brake force
o Stability
@ Ability to control the vehicle

The objective of the ABS system is to prevent wheel lock-up

Lecture 3
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ABS: Detecting wheel lock-up

If the wheels do not slide, then
wr~a<ug

This can be used to detect when the wheels are locking, either by
measuring the acceleration a or using an estimate of .

Another option is to use the skid
is - 1 - V

where V is estimated.
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Result of experiment; slip=20%; bang-bang control
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