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Section 1

Adaptive Cruise Control
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Longitudinal control: Cruise control

“RunSmart Predictive Cruise: How it Works
Unlike standard cruise control, where the truck tries to maintain a set
speed regardless of the terrain ahead, RunSmart Predictive Cruise looks up
to one mile ahead of the truck’s location and anticipates road grades by
using GPS and 3D digital map technology. The system adjusts the actual
speed of the truck for maximum fuel efficiency based on the terrain while
staying within 6 percent of the set speed.”

Press release from Freightliner Trucks, March 19 2009
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Longitudinal control: Cruise control

This is what happens with Active Prediction. Depending on 
the slope of the upcoming hill, we at some point decide to 
increase the speed slightly. This means that we enter the hill 
with full turbo pressure and start the climb using all the 
torque that the engine can deliver.
The normal gearchanging strategy is used. The vehicle 
climbs the hill and accelerates back to cruising speed. The 
climb was faster and we saved some time in a fuel efficient 
way. 
Then we come to a point where we adjust the speed for the 
upcoming descent. We want to avoid braking away energy, if 
possible. Ideally, we manage to lower the speed so much 
that we don’t need to use the retarder at all ... and when we 
are past the hill, the vehicle drops back to cruising speed.
In other words, with Scania Active Prediction, we save time 
going uphill and save fuel going downhill.

Scania Active Prediction - presentation December 2011
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Longitudinal control: Cruise control

Comparison between Look-ahead Controller (LC) and Conventional
controller (CC)
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Longitudinal control

Some examples

CC Cruise Control

ACC Adaptive Cruise Control

CA Collision avoidance

ABS Anti-Blockier-System
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ACC

Use radar or other senors to measure the distance to other vehicles.

Control brakes and acceleration

Three different modes

Cruise control

Keep distance to a vehicle in front of you

Brake to avoid collision
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ACC
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ACC: String stability

In a long caravan with ACC in all vehicles, string stability is important
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ACC String stability

Consider a caravan where xi , i = 1, 2, . . . the positions of the vehicles

Define
δi = xi − xi−1 + Ldes

where Ldes is the desired distance.

A simple longitudinal model of the vehicle

ẍi = ui

where the acceleration ui is the control signal

Assume that the following control strategy is used

ui = −kpδi − kv δ̇i
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ACC String stability

It is possible to show that the transfer function relating the spacing errors
of two consecutive vehicles is

G (s) =
δi (s)

δi−1(s)
=

kv s + kp
s2 + kv s + kp

The gain is

|G (iω)| =

√
k2
p + k2

vω
2

(kp − ω2)2 + k2
vω

2

and it is straightforward to show that |G (iω)| > 1 if ω <
√

2kp. This
means that the amplitude of a low frequency oscillation increases when it
is transferred backwards in the caravan.

Source: Vehicle Dynamics and Control, Rajesh Rajamani
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Section 2

Stopping Distance
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Longitudinal dynamic

From the previous lecture:

Ftot =ma

Equation of longitudinal motion:

m
dV

dt
= F − Rr − Rg − Ra
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Position as independent variable

In the cruise control application, the grade resistance Rg is a function of
position. In this and many other cases it is natural to use position as
independent variable.

The right-hand side of differential then becomes

m
dv

dt
= m

dv

dx

dx

dt
= mv

dv

dx
=

m

2

d(v2)

dx
=

d(mv2/2)

dx

and we obtain
m

2

d(v2)

dx
= F − Rr − Rg − Ra

Note that the previously introduced models for Rr and Ra are linear
functions of v2.
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Kinetic energy

It follows that

d(mv2/2) = (F − Rr − Ra) dx −mg dh

where

d(mv2/2):change of kinetic energy.

(F − Rr − Ra) dx : work

mg dh = mg sin θs dx : change of potential energy
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Stopping distance: First case

Given an initial speed V , the objective is to determine the stopping
distance S . From the previous slides:

m

2

d(v2)

dx
= −Fb − Rr − Rg − Ra

Before the general case is analyzed, some special cases will be considered
First case: Neglect all forces except Fb. In this case we get:

m

2
d(v2) = −Fb dx

Calculate the integrals from start to stop∫ 0

V 2

m

2
d(v2) = −

∫ S

0
Fb dx

Note how the intervals of the integrals were chosen!
Jan Åslund (Linköping University) Vehicle Dynamics and Control Lecture 3 16 / 40



Stopping distance: First case

The results is
mV 2

2
= FbS

i.e.
Initial kinetic energy = Stopping distance× Brake force

and

S =
mV 2

2Fb
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Stopping distance: Second case

The second case includes the grade resistance mg sin θs :∫ 0

V 2

m

2
d(v2) = −

∫ S

0
(Fb + mg sin θs) dx

and the result is
mV 2

2
= FbS + mg sin θsS

i.e.

Initial kinetic energy =Stopping distance× Brake force

+ Change in potential energy

and

S =
mV 2/2

Fb + mg sin θs
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Stopping distance: General case

m

2

d(v2)

dx
= −Fb −mg sin θs − frmg cos θs − Caev

2

It is a separable differential equation

m

2

∫ 0

V 2

d(v2)

Fb + mg sin θs + frmg cos θs + Caev2
= −

∫ S

0
dx

and

S =
m

2Cae
log

(
Fb + mg sin θs + frmg cos θs + CaeV

2

Fb + mg sin θs + frmg cos θs

)
=

m

2Cae
log

(
1 +

CaeV
2

Fb + mg sin θs + frmg cos θs

)
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Section 3

Tyre modelling: The Brush Model, cont’d
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Brush model

From Lecture 1

lt

lc
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Brush model: Normal pressure

It was assumed that the normal pressure was constant in the contact
region.

According to Figure 1.15 a parabola shaped distribution seem more
reasonable, i.e.,

dFz
dx

= Cx(lt − x)

In the adhesion region:
dFx
dx

= kt · i · x

and
dFx
dx

< µp
dFz
dx
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Brush model: Normal pressure

Sketch the normal and longitudinal force distributions:

dFx
dx

dFz
dx

xx

The longitudinal force Fx is the area under the curve to the right.
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Brush model: Sliding friction

Figure 1.16 shows the longitudinal force as a function of slip.

It can be seen that the force reaches a peak value and then decreases.

Assume that the sliding friction µs is lower than the friction µp in the
adhesive region, and that the normal force distribution is constant in the
contact region.
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Brush model: Sliding friction

Sketch the normal and longitudinal force distributions:

dFx
dx

dFz
dx

xx

The longitudinal force Fx is the area under the curve to the right.
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Section 4

Application: Estimations of Coefficient of Friction µ
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Estimation of coefficient of friction µ

The coefficient of friction has been an important part when alakyzing the
braking and acceleration performance. Now, one example will be presented
on how to estimate the coefficient.

The approach is based on the approximation

Fx
W

= K (µ) · i

where it is assumed that the gradient K is a function of µ. If we first find
an estimate of K , then we can calculate µ.

To be able to calclulate K , we will first estimate

Longitudinal force Fx

Normal force W

Longitudinal slip i
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Friction: Longitudinal force Fx

Assume that longitudinal acceleration is measured.

Longitudinal model
ma = Fx − Ra − Rr − Rg

The longitudinal force is now given by

Fx = m(a + g sin θs) + Ra + Rr

where

m is estimated mass

a + g sin θs is measured by the accelerometer

Ra and Rr is calculated using empirical models
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Friction: Normal force W

Normal force

Wf =
l2
L
mg − h

L
(Ra + m(a + g sin θs))

Wr =
l1
L
mg +

h

L
(Ra + m(a + g sin θs))
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Friction: Longitudinal slip i

Assume that the car is front-wheel driven.

Then there is no slip at the rear-wheel:

ir = 1− Vx

ωr rr
= 0

Modern cars have sensors measuring angular speed with high precision,
since this information is needed by the ABS-system.

The sensors at the rear wheels can therefore be used to calculate Vx and
then the slip at the front wheel can be calculated

if = 1− Vx

ωf rf

Now, the Fxf , Wf , and if at the front wheels are known and it possible to
estimate K and µ
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Section 5

Brake Force Distribution, cont’d
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Brake force distribution

From lecture 2

Kbf

Kbr
=

l2 + hµ

l1 − hµ

Kbf + Kbr = 1
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Electronic Brake-force Distribution

In this case we get

Wf =
1

L
(Wl2 + h(Fb + Fr ))

och

Wr =
1

L
(Wl1 − h(Fb + Fr ))

If we neglect aerodynamic resistance we get

Fb + Fr = m(a + g sin θ)

Assume that we measure the longitudinal acceleration. How can we use
this information to distribute the brake forces so that all wheels start
sliding at the same time, without knowing µ?
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Section 6

Antilock Braking Systems (ABS)
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ABS: Introduction
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ABS
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ABS: A simple control strategy
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ABS

When the wheels locks you loose

Brake force

Stability

Ability to control the vehicle

The objective of the ABS system is to prevent wheel lock-up

Jan Åslund (Linköping University) Vehicle Dynamics and Control Lecture 3 38 / 40



ABS: Detecting wheel lock-up

If the wheels do not slide, then

ω̇r ≈ a ≤ µg

This can be used to detect when the wheels are locking, either by
measuring the acceleration a or using an estimate of µ.

Another option is to use the skid

is = 1− rω

V

where V is estimated.
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ABS
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