Vehicle Dynamics and Control

Jan Åslund
jan.aslund@liu.se
Associate Professor
Dept. Electrical Engineering
Vehicular Systems
Linköping University
Sweden

Lecture 2

Section 1

Longitudinal Dynamics: Forces

Longitudinal dynamics

Model:

$$
F_{\text {tot }}=m a
$$

Forces acting on the vehicle in the longitudinal direction:

- Tractive/braking force from the wheels: F
- Rolling resistance: R_{r}
- Horizontal component of the gravitational force: R_{g}
- Aerodynamic resistance: R_{a}

Equation of motion in x-direction:

$$
m \frac{d V}{d t}=F-R_{r}-R_{g}-R_{a}
$$

Longitudinal dynamics: Forces

Some models for Tractive/braking force from the wheels, F, and rolling resistance, R_{r}, were presented the previous lecture.

The horizontal component of the gravitational force is

$$
R_{g}=W \sin \theta_{s}
$$

where $W=m g$ och θ_{s} is the slope angle.
I will use the convention that θ_{s} is positive in uphill slopes and negative in downhill slopes. (In the course book, it is assumed that θ_{s} is always positive and $R_{g}= \pm W \sin \theta_{s}$.)

Longitudinal dynamics: Aerodynamic resistance

Model for the aerodynamic resistance

$$
R_{a}=\frac{\rho}{2} C_{D} A_{f} V_{r}^{2}
$$

where
ρ : Air density
C_{D} : Coefficient of aerodynamic resistance
A_{f} : Frontal area
V_{r} : Speed of the vehicle relative to the wind
It will be assumed that $\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}$
Empirical formula for frontal area

$$
A_{f}=1.6+0.00056(m-765)
$$

The frontal area A_{f} and the coefficient C_{D} for som car models can be found in Table 3.1.

Aerodynamic resistance: Wind Tunnel Experiments

To get similar air flow of air the product of the characteristic length and the velocity should be the same:

The flow of air is also influenced by

- The cross-sectional area of the wind tunnel
- The speed of the road relative the speed of the vehicle

Aerodynamic resistance

The figure shows C_{D} for two trucks as a function of the distance between them

Aerodynamic Lift

The flow of air also causes a lift force

$$
R_{L}=\frac{\rho}{2} C_{L} A_{f} V_{r}^{2}
$$

where C_{L} is the coefficient of aerodynamic lift.

Section 2

Application: Mass estimation

Application: Mass Estimation

The mass of a truck varies depending the load carried on the trailer. To know the mass can be valuable when controlling the vehicle, e.g., when accelerating before an uphill slope.

Assume that we want to estimate the mass m and using the longitudinal equation motion

$$
m a=F-R_{r}-R_{g}-R_{a}
$$

If everything else in the equation is known except m, then the equation can be used to calculate m (using e.g. a Kalman filter).

Application: Mass estimation

Assume that rotational speed of the wheels are measured and used to estimate the speed V

Main challenges:
It may be difficult to estimate the longitudinal acceleration accurately.
The models for the propelling force F, rolling resistance R_{r}, and aerodynamic resistance R_{a} are usually not very accurate.

The slope angle θ_{S} is not known.

Application: Mass estimation

Assume that the signal from an accelerometer, measuring the longitudinal acceleration, is available. How can this information be used?

The longitudinal equation of motion

$$
m a=F-R_{r}-R_{g}-R_{a}
$$

can be rewritten as

$$
m(a+g \sin \theta)=F-R_{r}-R_{a}
$$

and the accelerometer is measuring

$$
a+g \sin \theta
$$

Hence, it is not necessary to know the slope angle θ.

Section 3

Maximal Acceleration

Longitudinal model

Now, the normal forces will included in the model.
Figure 3.1 shows the forces acting on a vehicle during an acceleration. Assume that the slope angle θ is equal to zero and the vehicle isn't moving. Then the equations of equilibrium are

$$
\begin{aligned}
W_{f}+W_{r} & =W \\
W_{f} I_{1}-W_{r} I_{2} & =0
\end{aligned}
$$

and the solution is

$$
\begin{aligned}
& W_{f}=\frac{l_{2}}{L} W \\
& W_{r}=\frac{l_{1}}{L} W
\end{aligned}
$$

Figure 3.1

Fig. 3.1 Forces acting on a two-axle vehicle.

Longitudinal model

Now, a moving vehicle will be considered.
It will be assumed that $h_{a}=h_{d}=h$ and equilibrium of moments about two point the distance h above the points A and B gives the equations

$$
\begin{array}{r}
-W I_{2}+L W_{f}+h\left(F_{f}-R_{r f}\right)+h\left(F_{r}-R_{r r}\right)=0 \\
W I_{1}-L W_{r}+h\left(F_{f}-R_{r f}\right)+h\left(F_{r}-R_{r r}\right)=0
\end{array}
$$

with the solutions

$$
W_{f}=\frac{l_{2}}{L} W-\frac{h}{L}\left(F-R_{r}\right)
$$

and

$$
W_{r}=\frac{l_{1}}{L} W+\frac{h}{L}\left(F-R_{r}\right)
$$

Maximal acceleration

Assume that the car is rear-wheel driven. What is the maximal propelling force that is possible to accomplish? The limit case is

$$
F_{\max }=\mu W_{r}+f_{r} W_{r}=\left(\mu+f_{r}\right)\left(\frac{I_{1}}{L} W+\frac{h}{L}\left(F_{\max }-R_{r}\right)\right)
$$

Solve for $F_{\text {max }}$ and use $R_{r}=f_{r} W$

$$
F_{\max }=\frac{\left(\mu+f_{r}\right) W\left(I_{1}-f_{r} h\right)}{L-\left(\mu+f_{r}\right) h}
$$

The corresponding result for a front-wheel driven car is

$$
F_{\max }=\left(\mu+f_{r}\right) W_{f}=\left(\mu+f_{r}\right)\left(\frac{L_{2}}{L} W-\frac{h}{L}\left(F_{\max }-R_{r}\right)\right)
$$

och

$$
F_{\max }=\frac{\left(\mu+f_{r}\right) W\left(I_{2}+f_{r} h\right)}{L+\left(\mu+f_{r}\right) h}
$$

Section 4

Brake Force Distribution

Lateral forces and stability: Introduction

Assume that a car is moving on a straight line and the motion is perturbed:

The figure shows that

- Front wheels turns the car counterclockwise (bad!?)
- Rear wheel turns the car clockwise (good!?)

Lateral forces and stability: Braking

Assume that the rear wheels are used for braking causing a wheel lock-up:

The figure shows that the car will turn away from the intended direction and the car will probably become unstable.

Lateral forces and stability: Braking

Let the front wheels be used instead causing a wheel lock-up:

The figure shows that rear wheel turns the car towards the direction of the unperturbed direction. The drawback is that it becomes difficult to maneuver the car.

Brake force distribution

The objective is to distribute the forces so that the front and rear begin to slide at the same time. Given a braking force F_{b}, we will find coefficients $K_{b f}$ and $K_{b r}, K_{b f}+K_{b r}=1$, and distribute the braking force $F_{b f}=K_{b f} F_{b}$ and $F_{b r}=K_{b r} F_{b}$ to reach the objective.
Figure 3.47 shows the forces acting on the vehicle In this case we get

$$
W_{f}=\frac{1}{L}\left(W I_{2}+h\left(F_{b}+f_{r} W\right)\right)
$$

och

$$
W_{r}=\frac{1}{L}\left(W I_{1}-h\left(F_{b}+f_{r} W\right)\right)
$$

Figure 3.47

Brake force distribution

In the case where all wheels begin to slide we have

$$
F_{b \max }=F_{b f}+F_{b r}=\mu W_{f}-f_{r} W_{f}+\mu W_{r}-f_{r} W_{r}=\mu W-f_{r} W
$$

Hence, $F_{b}+f_{r} W=\mu W$ and

$$
F_{b f}=K_{b f} F_{b \max }=\left(\mu-f_{r}\right) W_{f}=\frac{\left(\mu-f_{r}\right) W\left(I_{2}+h \mu\right)}{L}
$$

and

$$
F_{b r}=K_{b r} F_{b \max }=\left(\mu-f_{r}\right) W_{r}=\frac{\left(\mu-f_{r}\right) W\left(I_{1}-h \mu\right)}{L}
$$

The ratio of the brake forces is then

$$
\frac{F_{b f}}{F_{b r}}=\frac{K_{b f}}{K_{b r}}=\frac{l_{2}+h \mu}{I_{1}-h \mu}
$$

Brake force distribution: Alternative approach

Assume now that brake force distribution is given, i.e., $K_{b f}$ and $K_{b r}$ where $K_{b f}+K_{b r}=1$. Will the front or the rear wheel lock first?

Only the brake force and rolling resistance will be considered in this case. Hence

$$
m a=F_{b}+F_{r} \quad \text { and } \quad F_{b}+f_{r} W=\frac{W}{g} a
$$

First, the front wheels will be considered. The normal force is

$$
W_{f}=\frac{W}{L}\left(l_{2}+\frac{a}{g} h\right)
$$

In this case the brake force is

$$
F_{b f}=K_{b f} F_{b}=K_{b f} W\left(\frac{a}{g}-f_{r}\right)
$$

Brake force distribution: Alternative approach

The front wheel will lock when

$$
F_{b f}=\mu W_{f}-f_{r} W_{f}=\left(\mu-f_{r}\right) \frac{W}{L}\left(l_{2}+\frac{a}{g} h\right)
$$

It follows that

$$
K_{b f} W\left(\frac{a}{g}-f_{r}\right)=\frac{\left(\mu-f_{r}\right) W}{L}\left(l_{2}+\frac{a}{g} h\right)
$$

and the front wheels lock when

$$
\left(\frac{a}{g}\right)_{f}=\frac{\left(\mu-f_{r}\right) I_{2} / L+K_{b f} f_{r}}{K_{b f}-\left(\mu-f_{r}\right) h / L}
$$

In the same way wed get that the rear wheels lock when

$$
\left(\frac{a}{g}\right)_{r}=\frac{\left(\mu-f_{r}\right) I_{1} / L+K_{b r} f_{r}}{K_{b r}+\left(\mu-f_{r}\right) h / L}
$$

Brake force distribution: Alternative approach

Given a brake force distribution.
The front wheels will lock first if

$$
\left(\frac{a}{g}\right)_{f}<\left(\frac{a}{g}\right)_{r}
$$

and the rear wheels will lock first if

$$
\left(\frac{a}{g}\right)_{r}<\left(\frac{a}{g}\right)_{f}
$$

Section 5

Application: Cruise Control

Longitudinal control: Cruise control

> "RunSmart Predictive Cruise: How it Works
> Unlike standard cruise control, where the truck tries to maintain a set speed regardless of the terrain ahead, RunSmart Predictive Cruise looks up to one mile ahead of the truck's location and anticipates road grades by using GPS and 3D digital map technology. The system adjusts the actual speed of the truck for maximum fuel efficiency based on the terrain while staying within 6 percent of the set speed."
> Press release from Freightliner Trucks, March 192009

Longitudinal control: Cruise control

Optimal driving

Longitudinal control: Cruise control

Comparison between Look-ahead Controller (LC) and Conventional controller (CC)

