Försättsblad till skriftlig tentamen vid Linköpings Universitet

Datum för tentamen	2023-10-20
Sal	TER1, TERD, TERF
Tid	14-18
Kurskod	TSTE25
Provkod	TEN1
Kursnamn	Effektelektronik (Power Eectronics)
Institution	ISY
Antal uppgifter som ingår i ten-	5
tamen	
Antal sidor på tentamen	5
(inkl. försättsbladet)	
Jour/kursansvarig	Lars Eriksson
Telefon under skrivtid	079-061 20 73 (Arvind)
Besöker salen ca.	15 och 17
Tillåtna hjälpmedel	Vetenskaplig räknare, miniräknare,
	1 A4 medformler och information
Övrigt	Betygsgränser:
	20 poäng = godkänd

- 1. (a) (1 point) Draw the ideal characteristics for the Diode.
 - (b) (2 points) Draw the MOSFET drain current and the drain-to-source voltage when a positive pulse voltage is applied across the gate-source terminal.
 - (c) (2 points) When are the ideal characteristics used, and when are the more complicated characteristics (non-ideal) used?
- 2. The switched dc-dc step-down converter shown in Figure 1 controls a dc machine with an armature inductance $L_{\rm a} = 0.2 \,\mathrm{mH}$. The armature resistance can be neglected. The armature current i_o is 5 A. The switching frequency $f_{\rm sw} = 30 \,\mathrm{kHz}$ and the duty cycle, D = 0.8. Consider all the components to be ideal.

Figur 1: Step-down DC-DC converter.

- (a) (1 point) The output voltage, $V_{\rm o} = 200$ V. Calculate the input voltage, $V_{\rm d}$.
- (b) (2 points) Find the ripple in the armature current.
- (c) (2 points) Calculate the maximum and the minimum value of the armature current.
- (d) (2 points) The load on the machine is reduced. Calculate $I_{\rm a}$ when the converter is on the boundary between continuous and discontinuous mode.
- (e) (4 points) The load on the DC machine gives $I_a = 2 \text{ A}$. Is the converter in discontinuous mode? Note: The duty-cycle of the converter is changed
- 3. An n-channel power MOSFET, a VMO 400-02F made by IXYS, is to be used in a converter (*da-tasheet is attached*). The MOSFET is to conduct a continuous current of 300 A when on and the switching frequency is 10 kHz with a 50% duty cycle. The input voltage is 100 V. The internal junction temperature is not to exceed 100°C and the maximum ambient temperature is 35°C.
 - (a) (5 points) Calculate the total MOSFET power losses (assume the same time for voltage and current transients, i.e., $t_{\rm ri} = t_{\rm fv} = t_{\rm r}$ and $t_{\rm fi} = t_{\rm rv} = t_{\rm f}$).
 - (b) (2 points) Specify the thermal resistance of the required heat sink (Assume that the MOSTFET has no heat transfer paste).
 - (c) (2 points) Determine the peak MOSFET drain-to-source voltage during the switching transient if the blocking voltage (MOSFET drain-to-source voltage when it is completely turned off) is 100 V and the parasitic inductance is 100 nH.

- 4. The output voltages and current of a singe-phase <u>full-bridge</u> inverter are shown in the figure. Determine the following:
 - (a) (1 point) Type of modulation (unipolar or bipolar).
 - (b) (2 points) Switching frequency.
 - (c) (3 points) Inductance.
 - (d) (2 points) Peak fundamental current.
 - (e) (2 points) Pole-to-pole DC-link voltage (V_d) and modulation index (m_a) .
 - (f) (2 points) Active power on the load at the fundamental frequency.
 - (g) (1 point) Phase angle of the fundamental current with respect to the inverter side voltage.
 - (h) (2 points) Active and reactive power on the converter at the fundamental frequency.

Figur 2: Single-phase DC to AC full-bridge inverter output waveforms.

5. The problem with ripple in the output current from a single-phase full bridge converter is to be studied. The first harmonic of the output voltage is given by $V_{o(1)}$ at $f_1 = 50$ Hz. The load is given in the figure as L = 10 mH in series with an ideal voltage source $e_o(t)$. It is assumed that the converter operates in sinusoidal PWM mode, bipolar modulation.

$$e_{\rm o}(t) = \sqrt{2} \, 220 \, \sin\left(2\pi \, f_1 \, t\right)$$

- (a) (1 point) The frequency of the triangular signal is $1050 \,\text{Hz}$. Calculate the frequency modulation ratio (or pulse number), m_f .
- (b) (1 point) Find the dc-voltage when the converter fundamental RMS output voltage $V_{o(1)}$ is 230 V and modulation index, $m_a = 0.6$.
- (c) (2 points) Determine the RMS fundamental output current (i.e., current through the inductor).
- (d) (3 points) Determine the RMS and frequency of the highest output ripple current component.
- (e) (3 points) If a <u>Unipolar modulation</u> is used, determine the RMS and frequency of the highest output ripple current component.

Note: Ripple here is referred to as distortion, which is the alteration of the original shape of a signal. Here ripple means the alteration of the waveform from an ideal sinusoidal signal.

nannou nannonno	0 01 0 III		0 111 / 01 00	a outpu	e rerease
$h \downarrow m_a \rightarrow$	0.2	0.4	0.6	0.8	1
1	0.2	0.4	0.6	0.8	1
Fundamental					
m_f	1.242	1.15	1.006	0.818	0.6023
$m_f \pm 2$	0.061	0.061	0.131	0.22	0.318
$m_f \pm 4$					0.018
$2m_f \pm 1$	0.19	0.326	0.37	0.314	0.181
$2m_f \pm 3$		0.024	0.071	0.139	0.212
$2m_f \pm 5$				0.013	0.033
$3m_f$	0.335	0.123	0.083	0.171	0.133
$3m_f \pm 2$	0.044	0.139	0.203	0.176	0.062
$3m_f \pm 4$		0.012	0.047	0.104	0.157
$3m_f \pm 6$				0.016	0.044
$4m_f \pm 1$	0.163	0.157	0.088	0.105	0.068
$4m_f \pm 3$	0.012	0.070	0.132	0.115	0.009
$4m_f \pm 5$			0.034	0.084	0.119
$4m_f \pm 7$				0.017	0.05
	(_^_)	_^_			

Tabell 1: Generalized harmonics of a half-bridge inverter output voltage for a large m_f .

Note: output voltage (\hat{V}_o) is $\hat{V}_o = m_a V_d/2$.

MegaMOS[™]FET Module

N-Channel Enhancement Mode

Characteristic Values

typ. | max.

V

6 V

±500 nA

2.5 mA

12 mA

4.2 mΩ

(T_J = 25° C, unless otherwise specified)

min.

200

3

VMO 400-02F

			- Z
Symbol	Test Conditions Maximum		
V _{DSS}	$T_{J} = 25^{\circ}C$ to $150^{\circ}C$	200	V
$\mathbf{V}_{_{\mathrm{DGR}}}$	$T_{_J}$ = 25°C to 150°C; $R_{_{GS}}$ = 10 k Ω	200	V
V _{gs}	Continuous	±20	V
$V_{\rm gSM}$	Transient	±30	V
I _{D25}	T _κ = 25°C	418	A
I _{DM}	$T_{\kappa} = 25^{\circ}C, t_{p} = 10 \ \mu s$	1672	А
P _D	$T_c = 25^{\circ}C$ $T_{\kappa} = 25^{\circ}C$	2450 1640	W W
T,		-40+150	°C
TJM		150	°C
T_{stg}		-40 +125	°C
V _{isol}		3000 3600	V~ V~
M _d	Mounting torque (M6) Terminal connection torque (M5)	2.25-2.75/20-25 2.5-3.7/22-33	
Weight	typical including screws	250	g

	2	11 10
) V	The second
K		

= 200 V = 418 A

= 4.2 mΩ

1 = Drain 2 = Source10 = Kelvin Source

11 = Gate

Features

V_{DSS}

I_{D25}

 $\mathbf{R}_{\mathsf{DS(on)}}$

- International standard package
- Direct Copper Bonded Al₂O₃ ceramic base plate
- Isolation voltage 3600 V~
- Low R_{DS(on)} HDMOS[™] process
 Low package inductance for high
- speed switching Kelvin Source contact for easy drive

Applications

- · AC motor speed control for electric vehicles
- · DC servo and robot drives · Switched-mode and resonant-mode
- power supplies
- DC choppers

Advantages

- Easy to mount
- Space and weight savings
- · High power density
- · Low losses

IXYS reserves the right to change limits, test conditions, and dimensions.

 $\begin{array}{ll} V_{_{\rm DS}} \,=\, V_{_{\rm DSS}}, & V_{_{\rm GS}} \,=\, 0 \,\, V & T_{_{\rm J}} \,=\, 25^\circ C \\ V_{_{\rm DS}} \,=\, 0.8 \, \bullet \, V_{_{\rm DSS}}, & V_{_{\rm GS}} \,=\, 0 \,\, V & T_{_{\rm J}} \,=\, 125^\circ C \end{array}$

 $V_{_{GS}}$ = 10 V, $I_{_{D}}$ = 0.5 • $I_{_{D25}}$ Pulse test, t \leq 300 $\mu s,$ duty cycle d \leq 2 %

IXYS Corporation

Symbol

 V_{DSS}

I_{GSS}

l_{dss}

R_{DS(on)}

V_{GS(th)}

3540 Bassett Street, Santa Clara, CA 95054

Test Conditions

 $V_{GS} = 0 V, I_{D} = 12 mA$

 $V_{_{DS}}$ = 20 V, $I_{_{D}}$ = 120 mA

 $V_{GS} = \pm 20 \text{ V DC}, V_{DS} = 0$

Tel: 408-982-0700 Fax: 408-496-0670

LIXYS

VMO 400-02F

Symbol	Test Conditions Characteristic V (T, = 25°C, unless otherwise spec			
	min.	typ.	max.	
9 _{fs}	$V_{_{\rm DS}}$ = 10 V; $I_{_{\rm D}}$ = 0.5 • $I_{_{\rm D25}}$ pulsed	380	S	
C _{iss}		53	nF	
C _{oss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	9.6	nF	
C _{rss})	3.4	nF	
t _{d(on)}		210	ns	
t,	$V_{_{ m GS}} = 10 \text{ V}, V_{_{ m DS}} = 0.5 \bullet V_{_{ m DSS}}, \text$	500	ns	
t _{d(off)}	$R_{g} = 1 \Omega$ (External)	900	ns	
t,)	350	ns	
Qg		2300	nC	
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, $	420	nC	
Q _{gd}	J	1150	nC	
R _{thJC}			0.051 K/W	
R _{thJK}	with 30 μm heat transfer paste		0.076 K/W	

Source-Dra		Characteristic Value (T , = 25°C, unless otherwise specifie			
Symbol	Test Conditions min.	typ.		ieu)	
I _s	$V_{GS} = 0 V$		418	A	
I _{SM}	Repetitive; pulse width limited by $\mathrm{T}_{_{\mathrm{JM}}}$		1672	A	
V _{sd}	$ I_{_F} = I_{_S}; V_{_{GS}} = 0 \text{ V}, $ Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 %	0.9	1.2	V	
t _{rr}	$I_{_{\rm F}}$ = $I_{_{\rm S}}$, -di/dt = 1200 A/µs, $V_{_{\rm DS}}$ = 100 V	600		ns	

 IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:

 4,835,592
 4,881,106
 5,017,508
 5,049,961
 5,187,117
 5,486,715

 4,850,072
 4,931,844
 5,034,796
 5,063,307
 5,237,481
 5,381,025