
0018-9162/03/$17.00 © 2003 IEEE68 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Leakage Current:
Moore’s Law Meets
Static Power

P ower consumption is now the major tech-
nical problem facing the semiconductor
industry. In comments on this problem at
the 2002 International Electron Devices
Meeting, Intel chairman Andrew Grove

cited off-state current leakage in particular as a lim-
iting factor in future microprocessor integration.1

Off-state leakage is static power, current that
leaks through transistors even when they are turned
off. It is one of two principal sources of power dis-
sipation in today’s microprocessors. The other is
dynamic power, which arises from the repeated
capacitance charge and discharge on the output of
the hundreds of millions of gates in today’s chips.

Until very recently, only dynamic power has been
a significant source of power consumption, and
Moore’s law has helped to control it. Shrinking
processor technology has allowed and, below 100
nanometers, actually required reducing the supply
voltage. Dynamic power is proportional to the
square of supply voltage, so reducing the voltage
significantly reduces power consumption.

Unfortunately, smaller geometries exacerbate leak-
age, so static power begins to dominate the power
consumption equation in microprocessor design.

PROCESS TRENDS
Historically, complementary metal-oxide semi-

conductor technology has dissipated much less
power than earlier technologies such as transistor-
transistor and emitter-coupled logic. In fact, when
not switching, CMOS transistors lost negligible

power. However, the power they consume has
increased dramatically with increases in device
speed and chip density.

The research community has recognized the sig-
nificance of this increase for some time. Figure 1
shows total chip dynamic and static power con-
sumption trends based on 2002 statistics normal-
ized to the 2001 International Technology Road-
map for Semiconductors.2 The ITRS projects a
decrease in dynamic power per device over time.
However, if we assume a doubling of on-chip
devices every two years, total dynamic power will
increase on a per-chip basis. Packaging and cooling
costs as well as the limited power capacity of bat-
teries make this trend unsustainable.

Figure 1 also shows exponential increases pro-
jected for the two principal components of static
power consumption:

• subthreshold leakage, a weak inversion current
across the device; and

• gate leakage, a tunneling current through the
gate oxide insulation.

The ITRS expects the rate of these increases to level
out in 2005 but to remain substantial nonetheless.
Even today, total power dissipation from chip leak-
age is approaching the total from dynamic power,
and the projected increases in off-state subthreshold
leakage show it exceeding total dynamic power
consumption as technology drops below the 65-nm
feature size.

Microprocessor design has traditionally focused on dynamic power
consumption as a limiting factor in system integration. As feature sizes
shrink below 0.1 micron, static power is posing new low-power design
challenges.

Nam Sung
Kim
Todd Austin
David
Blaauw
Trevor
Mudge
University of
Michigan,
Ann Arbor

Krisztián
Flautner
ARM Ltd.

Jie S. Hu
Mary Jane
Irwin
Mahmut
Kandemir
Vijaykrishnan
Narayanan
Pennsylvania State
University

If they reach mainstream production, emerging
techniques to moderate the gate-oxide tunneling
effect—primarily by using high-k dielectrics to bet-
ter insulate the gate from the channel—could bring
gate leakage under control by 2010.

As leakage current becomes the major contribu-
tor to power consumption, the industry must
reconsider the power equation that limits system
performance, chip size, and cost.

POWER BASICS
Five equations model the power-performance

tradeoffs for CMOS logic circuits. We present them
here in simplifications that capture the basics for logic
designers, architects, and system builders. The first
three are common in the low-power literature.3 The
last two model subthreshold and gate-oxide leakage.

Operating frequency and voltage
The first relation shows the dependency of oper-

ating frequency on supply voltage:

f ∝ (V − Vth)α / V (1)

where V is the transistor’s supply voltage, Vth is its
threshold or switching voltage, and the exponent
α is an experimentally derived constant that, for
current technology, is approximately 1.3.

We can use this relation to develop an equation
relating frequency and supply voltage. First, con-
sider an operating voltage Vnorm and frequency
fnorm, which are normalized to the maximum oper-
ating voltage Vmax and frequency fmax. Then
approximate a linear relationship of frequency to
voltage with the following equation:

Vnorm = β1 + β2 ⋅ fnorm (2)

where the constants β1 = Vth / Vmax and β2 = 1 − β1.
From Equation 1 we see that f = 0 corresponds to
Vnorm = Vth / Vmax, which for today’s technology is
approximately 0.3. The simple relationship that
Equation 2 expresses closely matches recent indus-
trial data.4

Note that fmax corresponds to Vmax and that, as
the relation in Equation 1 specifies, the frequency
drops to zero when V is reduced to Vth. Equation
2 also indicates that reducing the operating fre-
quency by a particular percentage from fmax will
reduce the operating voltage by a smaller percent-
age. For instance, if we assume β1 = 0.3, reducing
the frequency by 50 percent (fnorm = 0.5) will reduce
the operating voltage by 35 percent (Vnorm = 0.65).
Conversely, reducing the voltage by half (Vnorm =

0.5) will reduce the operating frequency by more
than half (fnorm ≈ 0.3).

Overall power consumption
The third equation defines overall power con-

sumption as the sum of dynamic and static power:

P = ACV2f + VIleak (3)

The first term is the dynamic power lost from
charging and discharging the processor’s capaci-
tive loads: A is the fraction of gates actively switch-
ing and C is the total capacitance load of all gates.
The second term models the static power lost due
to leakage current, Ileak.

We have ignored power lost to the momentary
short circuit at a gate’s output whenever the gate
switches. The loss is relatively small; it contributes
to dynamic power loss, and the equation’s first term
can absorb it, if necessary.

When dynamic power is the dominant source of
power consumption—as it has been and as it
remains today in many less aggressive fabrication
technologies—we can approximate Equation 3
with just the first term. Its V2 factor suggests reduc-
ing supply voltage as the most effective way to
decrease power consumption. In fact, halving the
voltage will reduce the power consumption by a
factor of four. But Equation 2 shows that halving
the voltage will reduce the processor’s maximum
operating frequency by more than half.

To compensate for this performance loss, we can
use either parallel or pipelined implementations. If
the implementation runs the original serial com-
putation as two parallel subtasks or as two
pipelined subtasks, the dynamic power consump-
tion can decrease by more than a factor of two
compared to the serial case. Of course, the reduc-
tion depends on significant parallelism being pre-

December 2003 69

100

1

0.0001

0.01

0.0000001
1990 2000 2015 2020

300

250

200

150

100

50

0
1995 2005 2010

No
rm

al
ize

d
to

ta
l c

hi
p

po
w

er
 d

is
si

pa
tio

n

Ph
ys

ic
al

 g
at

e
le

ng
th

 (n
m

)

Gate-oxide
leakage

Sub-
threshold
leakage

Gate length

Dynamic
power

Possible trajectory
if high-k dielectrics
reach mainstream
production

Figure 1. Total chip
dynamic and static
power dissipation
trends based on
the International
Technology
Roadmap for
Semiconductors.
The two power plots
for static power
represent the 2002
ITRS projections
normalized to
those for 2001.
The dynamic power
increase assumes a
doubling of on-chip
devices every two
years.

70 Computer

sent in the computation, but many important
code classes approximate this condition,
including digital signal processing and image
processing.

Leakage current
But how useful are parallelism and pipelin-

ing for reducing power when static power
consumption becomes a major component?
As noted, leakage current, the source of sta-

tic power consumption, is a combination of sub-
threshold and gate-oxide leakage: Ileak = Isub + Iox.

Subthreshold power leakage. An equation that
Anantha Chandrakasan, William Bowhill, and
Frank Fox5 present shows how subthreshold leak-
age current depends on threshold voltage and sup-
ply voltage:

(4)

K1and n are experimentally derived, W is the gate
width, and Vθ in the exponents is the thermal volt-
age. At room temperature, Vθ is about 25 mV; it
increases linearly as temperature increases. If Isub

grows enough to build up heat, Vθ will also start to
rise, further increasing Isub and possibly causing
thermal runaway.

Equation 4 suggests two ways to reduce Isub.
First, we could turn off the supply voltage—that is,
set V to zero so that the factor in parentheses also
becomes zero. Second, we could increase the thresh-
old voltage, which—because it appears as a nega-
tive exponent—can have a dramatic effect in even
small increments. On the other hand, we know
from Equation 1 that increasing Vth will reduce
speed. The problem with the first approach is loss
of state; the problem with the second approach is
the loss of performance.

Gate width W is the other contributor to sub-
threshold leakage in a particular transistor. Designers
often use the combined widths of all the processor’s
transistors as a convenient measure of total sub-
threshold leakage.

Gate-oxide power leakage. Gate-oxide leakage is less
well understood than subthreshold leakage. For
our purposes, a simplification of equations from
Chandrakasan, Bowhill, and Fox5 is sufficient to
illustrate the key factors:

(5)

K2 and α are experimentally derived. The term of
interest is oxide thickness, Tox. Clearly, increasing

Tox will reduce gate leakage. Unfortunately, it also
degrades the transistor’s effectiveness because Tox

must decrease proportionally with process scaling
to avoid short channel effects. Therefore, increas-
ing Tox is not an option. The research community
is instead pursuing the development of high-k
dielectric gate insulators.

As with subthreshold leakage, a die’s combined
gate width is a convenient measure of total oxide
leakage.

Low-power architectural options
Because subthreshold and oxide leakage both

depend on total gate width or, approximately, gate
count, a pipelined implementation’s contribution
to leakage is comparable to the simple serial case,
apart from the extra gates that latches introduce to
separate the pipe stages. Pipelined implementations
can run at a lower voltage, which can reduce power
consumption for both dynamic and static power
compared to the serial case.

Parallel implementations can also run at a lower
voltage, but only by roughly doubling the amount
of hardware. Thus, depending on some of the equa-
tions’ experimental constants, the parallel case
could leak more power than the serial case—even
to the point of offsetting any savings in dynamic
power.

Pipelining is therefore the low-power solution. It
will always leak less power than the parallel case
because it has about half the hardware, and it will
leak less power than the serial case because it runs
at a lower voltage. In fact, pipelining’s combined
dynamic and static power leakage will be less than
that of the serial case.

REDUCING STATIC POWER CONSUMPTION
Unlike dynamic power, leakage is not activity

based, so reducing node switching when there is no
work does not help reduce power consumption.
Shutting off the inactive part of the system does
help, but it results in loss of state.

Retention flip-flops
When a device is inactive for a long period of

time, a “snooze” mode may help if the save/restore
cost is small compared to the power that the snooze
time conserves. For shorter inactive periods,
researchers have developed “balloon” logic, also
called retention flip-flops. The idea is to use high-
Vth latches to duplicate those latches that must pre-
serve state. As Equation 4 shows, the high-Vth

latches have a dramatically reduced subthreshold
leakage. In snooze mode, the control logic copies

Pipelining
is the low-power

architectural
solution.

the main latch’s state to the retention latch and
turns off the main latch to save energy.

A transistor’s threshold voltage depends on its
design and process technology. Typical values are
450 mV in 180-nm processes and 350 mV in 130-
nm technologies. Using doping techniques or apply-
ing a bias voltage to the substrate can increase
threshold voltage by 100 mV. This in turn reduces
leakage by a factor of about 10, but it increases
switching time by about 15 percent. Thus, low-
leakage retention flops are only useful in saving
state energy efficiently—their use on the proces-
sor’s critical path would slow it down. They also
incur die area increases for the duplicated latches,
which can be significant: 20 percent of the logic size
and 10 percent of total chip area are not unex-
pected for small embedded cores.

Controlling memory leakage
On-chip caches constitute the major portion of

the processor’s transistor budget and account for a
significant share of leakage. In fact, leakage is pro-
jected to account for 70 percent of the cache power
budget in 70-nm technology.6

Figure 2 illustrates the various leakage current
paths in a typical memory cell. The current through
the access transistor N3 from the bitline is referred
to as bitline leakage, while the current flowing
through transistors P1 and N2 is cell leakage.

Both bitline and cell leakage result from sub-
threshold conduction—current flowing from the
source to drain even when gate-source voltage is
below the threshold voltage. In addition, gate-oxide
leakage current is flowing through the transistor
gates.

Circuit techniques. Two broad categories of circuit
techniques aim to reduce leakage: state-destructive
and state-preserving.

State-destructive techniques use ground gating,
also called gated-Vdd. Ground gating adds an
NMOS (n-channel metal-oxide semiconductor)
sleep transistor to connect the memory storage cell
and the power supply’s ground.7-9 Turning a cache
line off saves maximum leakage power, but the loss
of state exposes the system to incorrect turn-off
decisions. Such decisions can in turn induce signif-
icant power and performance overhead by causing
additional cache misses that off-chip memories
must satisfy.

State-preserving techniques vary. Drowsy caches
multiplex supply voltages according to the state of
each cache line or block. The caches use a low-
retention voltage level for drowsy mode, retaining
the data in a cache region and requiring a high volt-

age level to access it.10 Waking up the drowsy cache
lines is treated as a pseudo cache miss and incurs
one additional cycle overhead.

Other proposed state-preserving techniques
include gradually decreasing threshold voltages11

and using preferred data values.12 All these tech-
niques reduce leakage less than turning a cache line
off completely, but accessing the low-leakage state
incurs much less penalty. Moreover, while state-pre-
serving techniques can only reduce leakage by about
a factor of 10, compared to more than a factor of
1,000 for destructive techniques, the net difference
in power consumed by the two techniques is less
than 10 percent. When the reduced wake-up time is
factored into overall program runtime, state-pre-
serving techniques usually perform better. They have
the additional benefit of not requiring an L2 cache.

Control techniques. There are two broad categories
of control techniques for leakage-saving features:

• application-sensitive controls, based on run-
time performance feedback,9,13 and

• application-insensitive controls, which peri-
odically turn off cache lines.6,7,10

The degree of control varies significantly within
each group. For example, an application-sensitive
technique9 may indicate that the processor can turn
off 25 percent of the cache because of a very high
hit rate, but it provides no guidance about which 75
percent of the cache lines will be used in the near
future. On the other hand, an insensitive technique
like the cache-decay algorithm7 keeps track of sta-
tistics for each cache line and thus may provide bet-
ter predictive behavior.

Application-insensitive algorithms do not opti-
mize for the specific workload. Instead, they aim
for good average behavior and minimize the down-
side of misprediction. Periodically turning off a
cache line is an example of such a scheme.10 Its suc-
cess depends on how well the selected period
reflects the rate at which the instruction or data
working set changes. Specifically, the optimum

December 2003 71

N4
N3

N1 N2

P1 P2

WL
(0V)WL

(0V)

BL
(1V)

BL
(1V)

(1V)
(0V)

Bitline leakage path
Cell leakage path

Figure 2. Leakage
current paths in a
memory cell. The
bitline leakage
current flows
through the access
transistor N3 from
the bitline, while
the cell leakage
flows through
transistors P1
and N2.

72 Computer

period may change not only across applications but
also within the different phases of one application.

In such cases, the algorithm must either keep the
cache lines awake longer than necessary or turn off
the lines that hold the current instruction working
set, which slows performance and wastes energy.
Addressing the first problem by decreasing the
period will exacerbate the second problem. On the
plus side, this approach is simple, has little imple-
mentation overhead, and works well for data
caches.

Application-insensitive algorithms can also exhibit
pathologically bad behavior on certain code types.
For example, one technique6 wakes up (and puts to
sleep) cache subbanks as execution moves between
them. If the first part of the loop is in one bank and
the latter part in another, the algorithm can cause
frequent drowsy-awake transitions that negatively
impact the loop’s performance. Moreover, the leak-
age current dissipated by lines that are awake and
not accessed can waste significant energy.

Compiler techniques
Using compiler directives might make it possible

to keep some loops within bank boundaries, assum-
ing that the compiler knows the bank structure.
However, a typical large application will likely have
to divide some loops across banks.

The compiler can also provide application-sen-
sitive leakage control. For example, a program’s
source code could include explicit loop-level cache
line turn-off instructions.13 However, this scheme
demands sophisticated program analysis and mod-
ification support as well as modifications to the
instruction set architecture.

The “Hotspots and Code Sequentiality” sidebar
describes a leakage management technique that
exploits two main characteristics of instruction
access patterns: the confinement of program exe-
cution mainly to program hotspots and the sequen-
tial access pattern that instructions exhibit.

TECHNOLOGY TRENDS AND CHALLENGES
Equation 4 shows that subthreshold leakage

exhibits a strong dependence on temperature.
Therefore, one approach to reducing subthreshold
leakage is to actively refrigerate the chip. While this
option seems promising for controlling the sub-
threshold leakage point, it does not address gate-
oxide leakage. Further, its practical application
faces significant technological and cost challenges.

Multiple threshold voltages
A more promising approach in terms of sub-

Hotspots and Code Sequentiality

Researchers at the Pennsylvania State University have developed a
scheme to manage instruction cache leakage that is sensitive to changes
in temporal and spatial locality during program execution.1

The scheme builds on drowsy cache techniques. It associates each
cache line with a mode bit that controls whether the line is awake and
accessible or in low-leakage drowsy mode. Periodically, a global sleep
signal resets all the mode bits to put all the cache lines in drowsy mode.

This approach is based on the notion that working sets change peri-
odically. In reality, the change is gradual, so asserting the sleep signal
will unnecessarily put some lines that are part of the working set into
drowsy mode.

Identifying hotspots
One improvement on this basic idea prevents inadvertent mode

transitions by augmenting each cache line with a local voltage-con-
trol-mask bit. When set, the VCM masks the influence of the global
sleep signal and prevents mode transition. The VCM bits are set based
on information from an enhanced branch target buffer. The BTB mon-
itors how often an application accesses the different basic blocks and
uses this information to identify whether they belong to a program
hotspot. Once the BTB determines that a program is within a hotspot,
the processor sets a global mask bit, then sets the VCM bits of all
accessed cache lines to indicate the program hotspot. The processor
updates the BTB access-frequency counters and the VCM bits peri-
odically to reflect the change in program phase.

Predicting transitions
A second improvement focuses on predictively transitioning the cache

lines that an application program will access next from sleep to normal
mode. The predictive strategy avoids the performance and associated
leakage penalty incurred from accessing a cache line in sleep mode. Since
sequentiality is the norm in code execution, the program counter pre-
dictively transitions the next cache line to the normal mode when it
accesses the current line. This technique is referred to as just-in-time
activation.

Tracking access moves
Finally, asserting the global sleep signal when accesses move from

one cache sub-bank to another enables the processor to identify oppor-
tunities for sleep mode transition when spatial locality changes. This
differs from asserting the global sleep signal periodically to capture
temporal locality changes.

Performance improvements
When averaged across 14 SPEC2000 benchmarks, these three

improvements provide an average leakage energy savings of 63 per-
cent in the instruction cache compared to using no leakage manage-
ment, 49 percent compared to the bank-based turnoff scheme, and 29
percent over the compiler-based turnoff scheme.

Reference
1. J. Hu et al., “Exploiting Program Hotspots and Code Sequentiality for

Instruction Cache Leakage Management,” Proc. Int’l Symp. Low-Power
Electronics and Design (ISLPED 03), ACM Press, 2003, pp. 402-407.

threshold current employs multiple threshold volt-
age technologies. Today’s processes typically offer
two threshold voltages. Designers assign a low
threshold voltage to a few performance-critical
transistors and a high threshold voltage to the
majority of less timing-critical transistors. This
approach incurs a high subthreshold leakage cur-
rent for the performance-critical transistors, but it
can significantly reduce the overall leakage.

Further, future technologies are likely to offer
three threshold voltages—low, high, and extra
high—or even more. This opens the way to new
leakage optimizations within different portions of
a cache or at different levels of its hierarchy. For
instance, the address-decoder and bus-driver cir-
cuits in a cache consume a significant portion of
total access time, so a designer could construct
them from high-Vth transistors, while constructing
the more numerous bit cells from extra-high-Vth

devices and reserving low-Vth devices for speed-crit-
ical parts of the processor core. Furthermore, new
tradeoffs become possible between the cache size
and its threshold voltage.

Another possible power optimization is to sig-
nificantly reduce leakage by increasing the L2
cache’s threshold voltage. To compensate for the
increased L2 access time, a designer could increase
the L1 cache size or use faster (and leakier) tran-
sistors to construct it. Trading off cache size and
threshold voltages at different levels of the on-chip
cache hierarchy can reduce the total leakage with-
out sacrificing overall performance.

These techniques do not address gate-oxide
leakage.

Gate length
As CMOS technology is scaled, variations in gate

length, oxide thickness, and doping concentrations
are becoming more significant—particularly for
intradie variations that occur among the devices of
a single die.

Figure 3a shows the impact of gate length varia-
tions on leakage current. Short-channel effects,
such as drain-induced barrier lowering, give sub-
threshold leakage current an exponential depen-
dence on the gate length. Thus, even a 10 percent
variation from the nominal length can change the
leakage current by a factor of three.

Figure 3b shows the expected probability distri-
bution of the leakage current for devices on a chip,
given a Gaussian distribution of gate lengths with
a standard deviation equal to 5 percent of mean for
a 180-nm process. The exponential increase in leak-
age current generates a log-normal distribution; the

long “tail” for high-leakage currents corresponds
to devices with small gate lengths. This distribu-
tion implies that a small set of devices experience
significantly more subthreshold leakage current
than the average device. Since caches comprise a
large number of devices, they have a high proba-
bility of containing a few “extremely leaky” gates.

Intradie process variations will require new
approaches to reducing cache leakage, specifically
targeting bit cells with high-leakage currents. One
approach would be to identify such cells at test time
and swap them with redundant cells.

Oxide tunneling
The growing significance of oxide-tunneling cur-

rent poses another challenge to reducing cache
leakage. Process scaling has consistently reduced
the gate-oxide layer’s thickness to provide sufficient
current drive at reduced voltage supplies. The
resulting gate-tunneling leakage current is signifi-
cant, as Equation 5 shows. Iox arises from the finite
(nonzero) probability of an electron directly tun-
neling through the insulating silicon oxide layer.

Figure 1 shows that gate-oxide current leakage
will catch up to subthreshold leakage in magni-
tude—and in many cases, it already has. The main
approach to reduce gate-oxide leakage applies
aggressive high-k materials with dielectric con-
stants of 25 to 50, such as hafnium oxide. These
materials greatly diminish gate-oxide leakage, but

December 2003 73

(a)

30

40

50

60

70

80

90

Le
ak

ag
e

cu
rr

en
t (

pA
)

0.16

(b) Leakage current (pA)
20 30 40 50 60 70 80 90 100

0.17 0.18 0.19 0.20

No
rm

al
ize

d
fre

qu
en

cy
 c

ou
nt

1.00

0.80

0.60

0.40

0.20

0

Drawn gate length (µm)

Figure 3. Leakage
current and gate
length. (a) Impact
of gate-length on
leakage current,
and (b) expected
probability
distribution of
the leakage
current for
devices on a chip.

74 Computer

they also pose numerous process integration prob-
lems. The ITRS does not project them reaching
mainstream production until 2010.4

The emerging importance of gate-oxide leakage
raises new challenges for leakage reduction in on-
chip caches. One possible approach employs tech-
nologies with dual-oxide thicknesses. Designers
could use thick-oxide transistors for cache bit cells,
for example, reducing overall gate-oxide leakage
in the same way high threshold voltage devices can
reduce subthreshold leakage.

Other methods of reducing subthreshold leakage
may apply to gate-tunneling current as well, but
their effects require further research. For example,
gate-oxide leakage—unlike subthreshold leakage—
has a very weak dependence on temperature. Thus,
as subthreshold leakage decreases with decreases in
operating temperature, gate-oxide leakage becomes
more dominant. This will require technology and
engineering that specifically target gate-oxide reduc-
tion in standby mode.

P ower consumption has become a primary con-
straint in microprocessor design, along with
performance, clock frequency, and die size.

Researchers in both industry and academia are
focusing on ways to reduce it. This community has
become adept at overcoming seemingly insur-
mountable barriers—for example, the supposed
feature size limits for optical lithography dictated
by the wavelength of visible light. We can expect
the community to meet the power challenge in the
next few years as well. �

Acknowledgments
This work was supported by ARM, an Intel

Graduate Fellowship, the US Defense Advanced
Research Projects Agency, the Semiconductor Re-
search Corporation, the Gigascale Silicon Research
Center, and the National Science Foundation.

References
1. R. Wilson and D. Lammers, “Grove Calls Leakage

Chip Designers’ Top Problem,” EE Times, 13 Dec.
2002; www.eetimes.com/story/OEG20021213S0040.

2. Semiconductor Industry Assoc., International Tech-
nology Roadmap for Semiconductors, 2002 Update;
http://public.itrs.net.

3. T. Mudge, “Power: A First-Class Architectural Design
Constraint,” Computer, Apr. 2001, pp. 52-58.

4. K. Nowka et al., “A 0.9V to 1.95V Dynamic Volt-

age-Scalable and Frequency-Scalable 32b PowerPC
Processor,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC), IEEE Press, 2002, pp. 340-341.

5. A. Chandrakasan, W. Bowhill, and F. Fox, Design of
High-Performance Microprocessor Circuits, IEEE
Press, 2001.

6. N. Kim et al., “Drowsy Instruction Caches: Leakage
Power Reduction Using Dynamic Voltage Scaling and
Cache Sub-bank Prediction,” Proc. 35th Ann. Int’l
Symp. Microarchitecture (MICRO-35), IEEE CS
Press, 2002, pp. 219-230.

7. S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power,” Proc. 28th Int’l Symp. Computer
Architecture (ISCA 28), IEEE CS Press, 2001, pp.
240-251.

8. M. Powell et al., “Gated-Vdd: A Circuit Technique to
Reduce Leakage in Deep-Submicron Cache Memo-
ries,” Proc. Int’l Symp. Low-Power Electronics and
Design (ISLPED 00), ACM Press, 2000, pp. 90-95.

9. M. Powell et al., “Reducing Leakage in a High-Per-
formance Deep-Submicron Instruction Cache,” IEEE
Trans. VLSI, Feb. 2001, pp. 77-89.

10. K. Flautner et al., “Drowsy Caches: Simple Tech-
niques for Reducing Leakage Power,” Proc. 29th
Ann. Int’l Symp. Computer Architecture (ISCA 29),
IEEE CS Press, 2002, pp. 148-157.

11. H. Kim and K. Roy, “Dynamic Vth SRAMs for Low
Leakage,” Proc. Int’l Symp. Low-Power Electronics
and Design (ISLPED 02), ACM Press, 2002, pp. 251-
254.

12. N. Azizi, A. Moshovos, and F.N. Najm, “Low-Leak-
age Asymmetric-Cell SRAM,” Proc. Int’l Symp.
Low-Power Electronics and Design (ISLPED 02),
ACM Press, 2002, pp. 48-51.

13. W. Zhang et al., “Compiler-Directed Instruction
Cache Leakage Optimization,” Proc. 35th Ann. Int’l
Symp. Microarchitecture (MICRO-35), IEEE CS
Press, 2002, pp. 208-218.

Nam Sung Kim is a PhD candidate at the Univer-
sity of Michigan. His research interests include low-
power and low-complexity microarchitecture
design at the circuit and microarchitectural bound-
ary. Kim received an MS in electrical engineering
from the Korea Advanced Institute of Science and
Technology, Taejon, Korea. He is a student mem-
ber of the IEEE and the ACM. Contact him at
kimns@eecs.umich.edu.

Todd Austin is an associate professor of electrical
engineering and computer science at the University
of Michigan. His research interests include com-
puter architecture, compilers, computer system ver-

ification, and performance analysis tools and tech-
niques. Austin received a PhD in computer science
from the University of Wisconsin. Contact him at
taustin@umich.edu.

David Blaauw is an associate professor of electri-
cal engineering and computer science at the Uni-
versity of Michigan. His research interests include
VLSI design and CAD with emphasis on circuit
analysis and optimization problems for high-per-
formance and low-power microprocessor designs.
Blaauw received a PhD in computer science from
the University of Illinois, Urbana-Champaign.
Contact him at blaauw@umich.edu.

Trevor Mudge is the Bredt Professor of Electrical
Engineering and Computer Science at the Univer-
sity of Michigan. In addition, he runs Idiot Savants,
a chip design consultancy, and advises several ven-
ture firms. His research interests include computer
architecture, computer-aided design, and compil-
ers. Mudge received a PhD in computer science
from the University of Illinois, Urbana-Cham-
paign. He is a Fellow of the IEEE and a member
of the ACM, the IEE, and the British Computer
Society. Contact him at tnm@eecs.umich.edu.

Krisztián Flautner is a principal researcher at ARM
Limited and the architect of ARM’s Intelligent
Energy Management technology. His research
interests address high-performance, low-power
processing platforms to support advanced software
environments. Flautner received a PhD in computer
science and engineering from the University of
Michigan. Contact him at krisztian.flautner@arm.
com.

Jie S. Hu is a PhD candidate at Pennsylvania State
University. His research interests include high-per-
formance, low-power microprocessor design;
power-efficient memory architectures; and com-
plexity-effective instruction issue queues. Hu
received an ME in signal and information process-
ing from Peking University. He is a student mem-
ber of the ACM and the IEEE. Contact him at
jhu@cse.psu.edu.

Mary Jane Irwin is the A. Robert Noll Chair in
Engineering in the Department of Computer Sci-
ence and Engineering at Pennsylvania State Uni-
versity. Her research interests include computer
architecture, embedded and mobile computing sys-
tems design, low-power design, and electronic
design automation. Irwin received a PhD in com-

puter science from the University of Illinois. She is
an IEEE Fellow, an ACM Fellow, and a member of
the National Academy of Engineering. Contact her
at mji@cse.psu.edu.

Mahmut Kandemir is an assistant professor of com-
puter science and engineering at Pennsylvania State
University. His research interests include optimiz-
ing compilers, I/O-intensive applications, and
power-aware computing. He received a PhD in elec-
trical engineering and computer science from Syra-
cuse University. He is a member of the IEEE and
the ACM. Contact him at kandemir@cse.psu.edu.

Vijaykrishnan Narayanan is an associate profes-
sor of computer science and engineering at Penn-
sylvania State University. His research interests are
in embedded systems, energy-efficient designs, com-
puter architecture, and VLSI design. Narayanan
received a PhD in computer science from the Uni-
versity of South Florida. He has received several
awards including the IEEE Computer Society’s
Richard E. Merwin Award. Contact him at
vijay@cse.psu.edu.

Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

computer.org/TCsignup/

Looking for a community targeted to your
area of expertise? IEEE Computer Society
Technical Committees explore a variety

of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

JOIN A
THINK
TANK

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

